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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical 
sciences scientific journal has been accepted for indexing in the Emerging Sources Citation 
Index, a new edition of Web of Science. Content in this index is under consideration by 
Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social 
Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth 
of content Web of Science offers to researchers, authors, publishers, and institutions sets it 
apart from other research databases. The inclusion of News of NAS RK. Series of geology 
and technical sciences in the Emerging Sources Citation Index demonstrates our dedication 
to providing the most relevant and influential content of geology and engineering sciences 
to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология 
және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің 
жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын 
хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды 
одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the 
Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science 
зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен 
сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы 
Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және 
беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды 
білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и 
технических наук» был принят для индексирования в Emerging Sources Citation Index, 
обновленной версии Web of Science. Содержание в этом индексировании находится 
в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия 
журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и 
the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину 
контента для исследователей, авторов, издателей и учреждений. Включение 
Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation 
Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному 
контенту по геологии и техническим наукам для нашего сообщества.
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СНОУ Дэниел, PhD, қауымдастырылған профессор, Небраска университетінің Су ғылымдары 
зертханасының директоры, (Небраска штаты, АҚШ), https://www.scopus.com/authid/detail.
uri?authorId=7103259215, https://www.webofscience.com/wos/author/record/1429613

ЗЕЛЬТМАНН Раймар, PhD, Жер туралы ғылымдар бөлімінің петрология және пайдалы қазбалар 
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ПАНФИЛОВ Михаил Борисович, техника ғылымдарының докторы, Нанси университетінің 
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зерттеу орталығы, (Израиль), https://www.scopus.com/authid/detail.uri?authorId=8610969300, https://www.
webofscience.com/wos/author/record/53680261
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полезных ископаемых в Отделе наук о Земле Музея естественной истории (Лондон, Англия), https://www.
scopus.com/authid/detail.uri?authorId=55883084800, https://www.webofscience.com/wos/author/record/1048681

ПАНФИЛОВ Михаил Борисович, доктор технических наук, профессор Университета Нанси (Нанси, 
Франция), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.webofscience.com/
wos/author/record/1230499

ШЕН Пин, PhD, заместитель директора Комитета по горной геологии Китайского геологического 
общества, член Американской ассоциации экономических геологов (Пекин, Китай), https://www.scopus.
com/authid/detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/record/1753209

ФИШЕР Аксель, ассоциированный профессор, PhD, технический университет Дрезден (Дрезден, 
Берлин), https://www.scopus.com/authid/detail.uri?authorId=35738572100, https://www.webofscience.com/
wos/author/record/2085986

АГАБЕКОВ Владимир Енокович, доктор химических наук, академик НАН Беларуси, почетный 
директор Института химии новых материалов (Минск, Беларусь), https://www.scopus.com/authid/detail.
uri?authorId=7004624845

КАТАЛИН Стефан, PhD, ассоциированный профессор, Технический университет (Дрезден, 
Германия), https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/
wos/author/record/1309251

САГИНТАЕВ Жанай, PhD, ассоциированный профессор, Назарбаев университет (Астана, Казахстан), 
https://www.scopus.com/authid/detail.uri?authorId=57204467637 , https://www.webofscience.com/wos/author/
record/907886

ФРАТТИНИ Паоло, PhD, ассоциированный профессор, Миланский университет Бикокк (Милан, 
Италия), https://www.scopus.com/authid/detail.uri?authorId=56538922400 НУРПЕИСОВА Маржан 
Байсановна – доктор технических наук, профессор Казахского Национального исследовательского 
технического университета им. К.И. Сатпаева, (Aлматы, Казахстан), https://www.scopus.com/authid/detail.
uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019

РАТОВ Боранбай Тойбасарович, доктор технических наук, профессор, заведующий кафедрой 
«Геофизика и сейсмология», Казахский Национальный исследовательский технический университет им. 
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Abstract. This paper considers the problem of utilisation of excess brines 
generated during potash ore processing at the Verkhne-Kamskoe deposit. The 
traditional method - discharge into water bodies - is not efficient enough and 
does not take into account changes in the hydrological regime. It is proposed to 
use filtration columns to purify brines before disposal, which requires efficient 
calculation of the purification process. To model the filtration process, the concept 
of mobile/immobile medium (MIM approach) is used to account for the interaction 
of impurity particles with the solid skeleton of the medium. This two-phase kinetic 
diffusion model incorporates the impurity adsorption and desorption parameters 
experimentally determined and verified within the study. Numerical modelling was 
carried out in a three-dimensional formulation taking into account the industrial 
dimensions of the filtration column and unsteady filtration conditions. The 
calculations are based on the solution of the system of equations describing impurity 
transport and fluid filtration in a porous medium, taking into account Darcy’s law 
and the Kozeny-Karman equation for permeability. The model takes into account 
the change of solution density depending on salt concentration. The results of 
numerical modelling show the dynamics of change of impurity concentration in 
time and space, as well as deposition of impurity on the skeleton of porous medium. 
The analysis of the obtained results allows to estimate the filtration efficiency and 
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to determine the necessity of filter washing. It is established that the sand filter can 
effectively reduce the concentration of salts in brines, while the need for washing is 
determined when the critical level of contamination of the filter material is reached. 
The conclusions of the work confirm the promising application of filtration columns 
for purification of excessive brines of potash production and allow optimising the 
process of waste disposal, reducing the environmental load on water bodies. The 
results obtained can be used to design and optimise industrial water treatment 
systems for potash production.

Keywords: water treatment, filtration column, highly concentrated brine, 
porous medium, Brinkman model
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Аннотация. Жұмыста Жоғарғы Кама кен орнында калий кендерін байыту 
кезінде пайда болатын артық тұзды ерітінділерді жою мәселесі қарастырылады. 
Дәстүрлі су объектілеріне төгу әдісі жеткілікті дәрежеде тиімді емес және 
гидрологиялық режимнің өзгеруін ескермейді. Кәдеге жаратпас бұрын 
тұзды ерітінділерді тазарту үшін сүзгі бағандарын пайдалану ұсынылады, 
бұл тазалау процесін тиімді есептеуді қажет етеді. Сүзу процесін модельдеу 
үшін қоспа бөлшектерінің ортаның қатты қаңқасымен әрекеттесуін ескеретін 
мобильді/мобильді емес орта (MIM тәсілі) тұжырымдамасы қолданылады. 
Бұл екі фазалы кинетикалық диффузия моделі қоспаның адсорбциясы мен 
десорбциясы параметрлерін қамтиды, зерттеу шеңберінде эксперименталды 
түрде анықталған және тексерілген. Сандық модельдеу сүзгі бағанының 
өнеркәсіптік өлшемдерін және стационарлық емес сүзу жағдайларын ескере 
отырып, үш өлшемді өндірісте жүргізілді. Есептеулер Дарси Заңын және 
өткізгіштік үшін Козени-қалта теңдеуін ескере отырып, кеуекті ортадағы 
қоспаның тасымалдануын және сұйықтықтың сүзілуін сипаттайтын теңдеулер 
жүйесін шешуге негізделген. Модель тұз концентрациясына байланысты 
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ерітіндінің тығыздығының өзгеруін ескереді. Сандық модельдеу нәтижелері 
уақыт пен кеңістіктегі қоспа концентрациясының өзгеру динамикасын, 
сондай-ақ кеуекті ортаның қаңқасында қоспаның тұнбасын көрсетеді. 
Алынған нәтижелерді талдау сүзудің тиімділігін бағалауға және сүзгіні жуу 
қажеттілігін анықтауға мүмкіндік береді. Құм сүзгісі тұзды ерітінділердегі 
тұздардың концентрациясын тиімді төмендететіні анықталды, жуу қажеттілігі 
сүзгі материалының ластануының маңызды деңгейіне жеткенде анықталады. 
Жұмыстың қорытындылары калий өндірісінің артық тұзды ерітінділерін 
тазарту үшін сүзгі бағандарын қолдану перспективасын растайды және су 
объектілеріне экологиялық жүктемені азайта отырып, қалдықтарды жою 
процесін оңтайландыруға мүмкіндік береді. Алынған нәтижелер калий 
өндірісі жағдайында өнеркәсіптік су тазарту жүйелерін жобалау және 
оңтайландыру үшін пайдаланылуы мүмкін.

Түйін сөздер: суды тазарту, сүзгі бағанасы, жоғары концентрацияланған 
тұзды ерітінді, кеуекті орта, бринкман моделі.
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Аннотация. В работе рассматривается проблема утилизации избыточных 
рассолов, образующихся при обогащении калийных руд на Верхне-
Камском месторождении. Традиционный метод – сброс в водоемы – 
недостаточно эффективен и не учитывает изменения гидрологического 
режима. Предлагается использовать фильтрационные колонны для очистки 
рассолов перед утилизацией, что требует эффективного расчета процесса 
очистки. Для моделирования процесса фильтрации используется концепция 
мобильно/немобильной среды (MIM-подход), учитывающая взаимодействие 
частиц примеси с твердым скелетом среды. Эта двухфазная кинетическая 
модель диффузии включает параметры адсорбции и десорбции примеси, 
экспериментально определенные и верифицированные в рамках исследования. 
Численное моделирование проводилось в трехмерной постановке с учетом 
промышленных размеров фильтрационной колонны и нестационарных 
условий фильтрации. Расчеты основаны на решении системы уравнений, 
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описывающих транспорт примеси и фильтрацию жидкости в пористой среде, 
с учетом закона Дарси и уравнения Козени-Кармана для проницаемости. 
Модель учитывает изменение плотности раствора в зависимости от 
концентрации соли. Результаты численного моделирования показывают 
динамику изменения концентрации примеси во времени и пространстве, а 
также осаждения примеси на скелете пористой среды. Анализ полученных 
результатов позволяет оценить эффективность фильтрации и определить 
необходимость промывки фильтра. Установлено, что песочный фильтр может 
эффективно снижать концентрацию солей в рассолах, при этом необходимость 
промывки определяется по достижении критического уровня загрязнения 
фильтрующего материала. Выводы работы подтверждают перспективность 
применения фильтрационных колонн для очистки избыточных рассолов 
калийного производства и позволяют оптимизировать процесс утилизации 
отходов, снижая экологическую нагрузку на водоемы. Полученные результаты 
могут быть использованы для проектирования и оптимизации промышленных 
систем водоочистки в условиях калийного производства.

Ключевые слова: очистка воды, фильтрационная колонна, 
высококонцентрированный рассол, пористая среда, модель Бринкмана

Introduction. The largest potash and magnesium salt deposit is the Verkhne-
Kamskoye (VKMKMS). The resulting ore is a mixture of potassium chloride, 
magnesium chloride and sodium chloride, with potassium chloride acting as the 
main ‘useful component’. Currently, the beneficiation of potash ores is generally 
carried out in the aqueous phase. In the aqueous phase beneficiation process, 
approximately 1 m3 of water is required to dissolve one tonne of ore, resulting in 
the need to remove and dispose of excess brines. 

Despite advances in beneficiation and wastewater treatment technologies, to 
date, in the VKMKMS area and in Europe, virtually the only method of disposal of 
excess brine is discharge to surface water bodies. Given that the hydrological and 
hydrochemical regimes of water bodies change significantly throughout the year, 
while the production processes that create wastewater remain relatively stable, 
it is important to synchronise these processes to reduce loads during periods of 
water shortage (Kobylkin, et. al., 2022; Batukhtin, et. al., 2020; Golik, et. al., 2023; 
Cherkasova, et. al., 2022). This synchronisation can be achieved through the use 
of filtration columns that allow wastewater to be treated in a manner that meets 
regulatory water quality requirements for disposal to surface water bodies. In the 
implementation of this scheme, an efficient calculation of excess brine treatment 
processes becomes a central issue (Pashkov, et. al., 2014; Malyukova, et. al., 2023).

Industrial water treatment and water purification is the process of removing 
impurities and contaminants from the initial composition of the medium. In order 
to obtain a liquid with specified quality parameters, complex systems of filters 
and treatment plants are used. Analysing the filtration process in order to find an 
effective way to control the water purification process when transporting a limited 
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volume of impurity in a porous column is in demand, as it has wide application in 
industrial scale (Batukhtin, et. al., 2018; Golik, et. al., 2023; Klyuev, et. al., 2019). 
Quite a large number of works have been carried out in the framework of laboratory 
experiments and theoretical studies of systems characterised by laboratory scale 
(Pang, et al., 2004; Agaoglu, et. al., 2012). 

When a fluid flows in an array of porous media, there is a problem of visualising 
the change in concentration of the solute dispersing in the carrier medium. 
Experiments on visualisation of dispersion of dissolved substances within the 
laboratory scale are performed on transparent model porous media of different 
morphology. In this way, longitudinal and transverse dispersion coefficients are 
evaluated as a function of fluid flow rate and appropriate dispersion regimes for 
solute dispersion are determined (Gomez, et. al., 2010).

Typically, impurity transport is described by jointly solving the filtration 
equations, in the framework of the classical Darcy model, and diffusion in the 
Fickian approximation. However, the characteristic times of impurity removal in 
such a model differ from the predicted ones by several orders of magnitude. For a 
more correct description of the process, the concept of mobile/immobile medium 
(MIM approach) was proposed (Maryshev, et. al., 2023). This concept takes into 
account the interaction (adhesion/ detachment) of impurity particles with the solid 
skeleton of the medium and is based on the two-phase kinetic model of diffusion. 
This approach assumes the presence of two phases of impurity: settled (adsorbed) 
impurity and free impurity drifting with the flow. In this paper, all the coefficients 
of the MIM model are experimentally and theoretically determined and verified.

Several researchers have conducted laboratory experiments on contaminant 
transport in sand columns (Nield, Bejan, 2017; Rolle, et al., 2009; Qian, et al., 
2015). In (Nield, Bejan, 2017), the authors investigated the flow and mixing 
processes of variable density waters in porous media in laboratory reservoir models 
and concluded that density variations can create complex flow and mixing patterns. 
Rolle et al. (Rolle, et al., 2009) performed numerical simulations of laboratory 
experiments using both conservative and reactive tracers under transient flow 
conditions in porous media and found that the numerical results nearly matched 
the measured concentrations and that transient flow enhanced lateral mixing 
and mixing-controlled reactions. In (Qian, et al., 2015) presented a study on the 
transport dynamics of sodium chloride and the food colourant brilliant blue FCF 
through a column with homogeneous silica sand and found that sodium chloride 
less behaves in an excellent manner and is a non-passive impurity characterised by 
complex convective modes.

However, previous work on solute transport through porous aquifers has been 
carried out for laboratory installations. Such studies have not been carried out 
for industrial plants, which are characterised by dimensions of the order of ten 
metres, in combination with the changing characteristics of the porous media due 
to pore plugging (Kulikova et. al., 2024; Bosikov, et. al.,  2023; Yaitskaya, et. al., 
2024). Thus, additional studies are needed to fully understand the behaviour of 
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high concentration water flow and solute transport with changing porous skeleton 
characteristics. Since a visualised study of the processes under industrial conditions 
is not possible, numerical simulations of solute transport (which are continuously 
pumped) are carried out within the scope of the present work under unsteady 
conditions in a homogeneous porous media column. 

Numerical modelling of sand filter operation is carried out within the framework 
of the present work in order to assess the possibility of its application for reduction 
of salt concentration in excessive brines of potash production. The calculations 
are based on the MIM model of filtration developed in (Maryshev, et. al., 2023). 
The application of such filters will include a washing stage necessary to remove 
accumulated contaminants. Numerical modelling allows, among other things, to 
determine the frequency of washing and to calculate the filtration efficiency.

Problem Statement. Mechanical treatment of water is necessary to meet 
regulatory standards for turbidity, transparency and colour, which is due to the 
presence of insoluble suspended particles such as sand, clay, silt, colloidal iron and 
silica, as well as pipeline rust, scale and other impurities in water. This method is 
the most common way of water treatment. To organise industrial water treatment, 
large-sized filters (Fig. 1), reaching heights of up to ten metres, are used.

transient flow enhanced lateral mixing and mixing-controlled reactions. In (Qian, et al., 2015) 
presented a study on the transport dynamics of sodium chloride and the food colourant brilliant 
blue FCF through a column with homogeneous silica sand and found that sodium chloride less 
behaves in an excellent manner and is a non-passive impurity characterised by complex convective 
modes. 

However, previous work on solute transport through porous aquifers has been carried out for 
laboratory installations. Such studies have not been carried out for industrial plants, which are 
characterised by dimensions of the order of ten metres, in combination with the changing 
characteristics of the porous media due to pore plugging (Kulikova et. al., 2024; Bosikov, et. al.,  
2023; Yaitskaya, et. al., 2024). Thus, additional studies are needed to fully understand the 
behaviour of high concentration water flow and solute transport with changing porous skeleton 
characteristics. Since a visualised study of the processes under industrial conditions is not possible, 
numerical simulations of solute transport (which are continuously pumped) are carried out within 
the scope of the present work under unsteady conditions in a homogeneous porous media column.  

Numerical modelling of sand filter operation is carried out within the framework of the 
present work in order to assess the possibility of its application for reduction of salt concentration 
in excessive brines of potash production. The calculations are based on the MIM model of filtration 
developed in (Maryshev, et. al., 2023). The application of such filters will include a washing stage 
necessary to remove accumulated contaminants. Numerical modelling allows, among other things, 
to determine the frequency of washing and to calculate the filtration efficiency. 

Problem Statement. Mechanical treatment of water is necessary to meet regulatory 
standards for turbidity, transparency and colour, which is due to the presence of insoluble 
suspended particles such as sand, clay, silt, colloidal iron and silica, as well as pipeline rust, scale 
and other impurities in water. This method is the most common way of water treatment. To 
organise industrial water treatment, large-sized filters (Fig. 1), reaching heights of up to ten metres, 
are used. 

 
Fig. 1. Example of an industrial mechanical filtration filter. Vertical filtration column 
 
Methods. To describe the equations of impurity transport, we consider a small physical 

volume of porous medium, V . Impurity transport is described on the basis of conservation laws, 

Fig. 1. Example of an industrial mechanical filtration filter. Vertical filtration column

Methods. To describe the equations of impurity transport, we consider a small 
physical volume of porous medium, V. Impurity transport is described on the 
basis of conservation laws, and it is assumed that filtration flows of the considered 
mixture completely fill the pore space. It is assumed that the internal structure of 
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the filter prevents the development of instabilities of filtration flows, in particular 
the Rayleigh-Taylor instability. In this case, concentration convection of brine in 
the porous medium can be neglected. 

The part of the space not occupied by the skeleton of the porous medium is 
called the pore space, V0. Following (Maryshev, Khabin, Evgrafova, 2023), we 
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Summarising these conservation laws, we obtain the incompressibility condition for 
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Summarising these conservation laws, we obtain the incompressibility condition for 
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Summarising these conservation laws, we obtain the incompressibility condition for 
filtration of the mixture: 
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Summarising these conservation laws, we obtain the incompressibility condition for 
filtration of the mixture: 

 ( )div div 0, = =v u  910\* MERGEFORMAT () 
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where ( )   is permeability of the medium,   is dynamic viscosity coefficient,  is liquid density 
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 is permeability of the medium, η is dynamic viscosity coefficient, 
p is liquid density and g is gravitational acceleration. It is assumed that settling of 
particles on the pore walls occurs without significant change in the shape of the 
porous medium grain, in this case permeability can be described as a single-valued 
function of porosity. The most popular way of such description is given by the 
Kozeny-Karman equation.
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where   is the Kozeny-Karman parameter depending on the shape and distribution of the medium 
grains.  

The transition of impurity from a mobile state to a stationary state will be described in the 
framework of the MIM approach (Maryshev, Khabin, Evgrafova, 2023): 
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where 
129.6 h −= , 

17.7 h −=  are adsorption and desorption coefficients, respectively, 0 0.1q =  
is saturation concentration of the non-mobile component of the impurity. The values of the 
parameters are taken from (Maryshev, Khabin, Evgrafova, 2023). 

Research results. Three-dimensional numerical simulation of flow was carried out in a 
columnar displacement array consisting of a porous medium characterised by industrial spatial 
dimensions of industrial samples. A case corresponding to the conditions where potassium salt is 
considered as a contaminant was considered. It is assumed that the vertical column is a desalination 
system, the operation of which results in saturation and clogging of the pores of the medium, at 
the end of the operating cycle of such a filter and requires its washing. The geometry of the 
calculation domain and the calculation grid are shown in Fig. 2. It is assumed that the filter is 
almost completely filled with quartz sand. Modelling of brine flows in the part of the filter not 
filled with sand was carried out on the basis of the standard turbulence model (Parshakova, et. al., 
2022). 

 
Fig. 2. Geometry of the computational domain (a) and computational grid of the proximity of the 

inlet (b) and outlet (c) nozzles. 
 
The dependence of density on concentration was given by the formula: 
 0 С = + , 

where 0 999.993 = g/l is the density of pure water, С  is salt mass concentration. As an initial state 
0С =  g/l was set. At the inlet of the calculation domain, a constant operating pressure, 0 2.5p =  

atm, and the constant impurity concentration, 0 300С =
 g/l, were set. At the outlet of the design 

domain, normal atmospheric pressure was set. At other boundaries the condition of absence of 
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where γ is the Kozeny-Karman parameter depending on the shape and distribution 
of the medium grains. 
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Research results. Three-dimensional numerical simulation of flow was carried 
out in a columnar displacement array consisting of a porous medium characterised 
by industrial spatial dimensions of industrial samples. A case corresponding to the 
conditions where potassium salt is considered as a contaminant was considered. 
It is assumed that the vertical column is a desalination system, the operation of 
which results in saturation and clogging of the pores of the medium, at the end of 
the operating cycle of such a filter and requires its washing. The geometry of the 
calculation domain and the calculation grid are shown in Fig. 2. It is assumed that 
the filter is almost completely filled with quartz sand. Modelling of brine flows in 
the part of the filter not filled with sand was carried out on the basis of the standard 
turbulence model (Parshakova, et. al., 2022).
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 atm, and the constant impurity concentration, C0=300 
g/l, were set. At the outlet of the design domain, normal atmospheric pressure was 
set. At other boundaries the condition of absence of normal velocity component 
was set, i.e. the boundaries were considered impermeable for the substance

Numerical modelling results. Based on the filtration model described above, 
a three-dimensional numerical simulation of a vertical porous column has been 
carried out to investigate the effects of flows on the change of porous medium 
properties in industrial filtration columns during filtration. The results of the 
calculations are shown in Figs. 3-5.
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Fig. 3. Impurity concentration in the vertical section and fluid current line at different time 
points: (a) t = 1 hour 20 minutes, (b) t = 2 hours, (c) t = 4 hours 

 
The filter inlet is located above the level of sand backfill in the filter. As a result, intensive 

turbulent fluid flows are observed in the upper part of the filter (Fig. 3), leading to brine mixing 
and formation of a homogeneous displacement front in the porous medium. At the same time, 
inside the porous medium the flow intensity is much lower and the flow structure is close to a 
plane-parallel flow. The average productivity of the filtration unit in the considered case was 8 
m3/h. 
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The filter inlet is located above the level of sand backfill in the filter. As a result, 
intensive turbulent fluid flows are observed in the upper part of the filter (Fig. 3), 
leading to brine mixing and formation of a homogeneous displacement front in the 
porous medium. At the same time, inside the porous medium the flow intensity is 
much lower and the flow structure is close to a plane-parallel flow. The average 
productivity of the filtration unit in the considered case was 8 m3/h.
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Fig. 4. Dimensionless concentration of non-mobile impurity (q) in the vertical section at different 
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Calculations have shown that during filtration a significant part of the impurity 
passes into the non-mobile phase, i.e. settles on the skeleton of the porous medium. 
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At the same time, the salt concentration in the mobile phase (in the filtration flow) 
decreases. Fig. 4 shows dimensionless concentrations of non-mobile impurity (q) 
at different moments of time. As can be seen, for example, in Figs. 3, b and 4, b, 
the process of impurity deposition on the skeleton of the porous medium is quite 
intensive even in the lower part of the filter, where at the considered moment of 
time the salt concentration is quite low. As a result, a zone of deposited impurity 
accumulation is formed, which can eventually lead to a decrease in filter capacity 
and deterioration of cleaning efficiency. This process should be taken into 
account when calculating the frequency of filter washing in order to maintain its 
performance characteristics and to ensure the output of water with the required 
quality parameters. Analysing the spatial distribution of concentrations makes it 
possible to evaluate the filtration efficiency at different sections of the column and 
to predict the moment when pore blockage begins and washing is required.

Calculations have shown that during filtration a significant part of the impurity passes into 
the non-mobile phase, i.e. settles on the skeleton of the porous medium. At the same time, the salt 
concentration in the mobile phase (in the filtration flow) decreases. Fig. 4 shows dimensionless 
concentrations of non-mobile impurity (q) at different moments of time. As can be seen, for 
example, in Figs. 3, b and 4, b, the process of impurity deposition on the skeleton of the porous 
medium is quite intensive even in the lower part of the filter, where at the considered moment of 
time the salt concentration is quite low. As a result, a zone of deposited impurity accumulation is 
formed, which can eventually lead to a decrease in filter capacity and deterioration of cleaning 
efficiency. This process should be taken into account when calculating the frequency of filter 
washing in order to maintain its performance characteristics and to ensure the output of water with 
the required quality parameters. Analysing the spatial distribution of concentrations makes it 
possible to evaluate the filtration efficiency at different sections of the column and to predict the 
moment when pore blockage begins and washing is required. 

 
Fig. 5. Dependence of average (over the outlet section) concentration of impurity after 

cleaning on time 
The efficiency of the considered filtration system can be estimated by the dependence of the 

average concentration of impurity at the filter outlet on time (Fig. 5). Modelling has shown that 
the filtration capacity of the system varies significantly with time. Three main stages can be 
distinguished: ‘A’ - filtration efficiency is high, the impurity is almost completely deposited on 
the skeleton of the porous medium; “B” - average filtration efficiency, there is an increase in the 
salt concentration at the outlet of the filtration unit; “C” - filtration efficiency decreases 
significantly. As a result, it can be concluded that it is necessary to wash the filter every 3 hours 
to remove accumulated contaminants. In this case, the time average salt concentration at the filter 
outlet decreases to 15 g/l.  

Conclusion. Three-dimensional numerical simulation of flow in a columnar displacement 
array consisting of a porous medium characterised by spatial dimensions of industrial samples has 
been carried out. A modelling case with potassium salt as a contaminant was considered. It is 
assumed that the vertical column is a desalination system, as a result of its operation saturation 
and clogging of the pores of the medium occurs, at the end of the working cycle of such a filter 
requires its washing. Modelling of filtration was carried out on the basis of MIM-model taking 
into account density stratification. The finite volume method was used to discretise the governing 
equations and boundary conditions.  

Three-dimensional numerical modelling of a vertical porous column was carried out on the 
basis of this filtration model. The filtration efficiency has been evaluated. It is shown that the 
column filled with fine fraction sand can be effective in re-treatment for disposal of waste water 
into surface water bodies without exceeding the maximum permissible concentrations. The 
advantage of this filtration plant is its simplicity and relatively low cost of implementation. The 
disadvantage is the necessity of frequent washing of the installation. 

 

Fig. 5. Dependence of average (over the outlet section) concentration of impurity after cleaning on 
time

The efficiency of the considered filtration system can be estimated by the 
dependence of the average concentration of impurity at the filter outlet on time (Fig. 
5). Modelling has shown that the filtration capacity of the system varies significantly 
with time. Three main stages can be distinguished: ‘A’ - filtration efficiency is high, 
the impurity is almost completely deposited on the skeleton of the porous medium; 
“B” - average filtration efficiency, there is an increase in the salt concentration at 
the outlet of the filtration unit; “C” - filtration efficiency decreases significantly. As 
a result, it can be concluded that it is necessary to wash the filter every 3 hours to 
remove accumulated contaminants. In this case, the time average salt concentration 
at the filter outlet decreases to 15 g/l. 

Conclusion. Three-dimensional numerical simulation of flow in a columnar 
displacement array consisting of a porous medium characterised by spatial 
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dimensions of industrial samples has been carried out. A modelling case with 
potassium salt as a contaminant was considered. It is assumed that the vertical 
column is a desalination system, as a result of its operation saturation and clogging 
of the pores of the medium occurs, at the end of the working cycle of such a filter 
requires its washing. Modelling of filtration was carried out on the basis of MIM-
model taking into account density stratification. The finite volume method was used 
to discretise the governing equations and boundary conditions. 

Three-dimensional numerical modelling of a vertical porous column was carried 
out on the basis of this filtration model. The filtration efficiency has been evaluated. 
It is shown that the column filled with fine fraction sand can be effective in re-
treatment for disposal of waste water into surface water bodies without exceeding 
the maximum permissible concentrations. The advantage of this filtration plant is 
its simplicity and relatively low cost of implementation. The disadvantage is the 
necessity of frequent washing of the installation.
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